3,418 research outputs found

    TRAVELING WAVE SOLUTIONS FOR A COMBUSTION MODEL

    Get PDF
    From the compressible Navier-Stokes equations for a reacting mixture, we reduce the system to obtain a one-dimensional 2-species polytropic gas combustion model. We examine the equilibria and determine their stability as well as identify the conditions that provide for the existence and uniqueness of a traveling wave/shock layer solution

    JISC Preservation of Web Resources (PoWR) Handbook

    Get PDF
    Handbook of Web Preservation produced by the JISC-PoWR project which ran from April to November 2008. The handbook specifically addresses digital preservation issues that are relevant to the UK HE/FE web management community”. The project was undertaken jointly by UKOLN at the University of Bath and ULCC Digital Archives department

    Differential regulation of bladder pain and voiding function by sensory afferent populations revealed by selective optogenetic activation

    Get PDF
    Bladder-innervating primary sensory neurons mediate reflex-driven bladder function under normal conditions, and contribute to debilitating bladder pain and/or overactivity in pathological states. The goal of this study was to examine the respective roles of defined subtypes of afferent neurons in bladder sensation and function in vivo via direct optogenetic activation. To accomplish this goal, we generated transgenic lines that express a Channelrhodopsin-2-eYFP fusion protein (ChR2-eYFP) in two distinct populations of sensory neurons: TRPV1-lineage neurons (Trpv1Cre;Ai32, the majority of nociceptors) and Nav1.8+ neurons (Scn10aCre;Ai32, nociceptors and some mechanosensitive fibers). In spinal cord, eYFP+ fibers in Trpv1Cre;Ai32 mice were observed predominantly in dorsal horn (DH) laminae I-II, while in Scn10aCre;Ai32 mice they extended throughout the DH, including a dense projection to lamina X. Fiber density correlated with number of retrogradely-labeled eYFP+ dorsal root ganglion neurons (82.2% Scn10aCre;Ai32 vs. 62% Trpv1Cre;Ai32) and degree of DH excitatory synaptic transmission. Photostimulation of peripheral afferent terminals significantly increased visceromotor responses to noxious bladder distension (30–50 mmHg) in both transgenic lines, and to non-noxious distension (20 mmHg) in Scn10aCre;Ai32 mice. Depolarization of ChR2+ afferents in Scn10aCre;Ai32 mice produced low- and high-amplitude bladder contractions respectively in 53% and 27% of stimulation trials, and frequency of high-amplitude contractions increased to 60% after engagement of low threshold (LT) mechanoreceptors by bladder filling. In Trpv1Cre;Ai32 mice, low-amplitude contractions occurred in 27% of trials before bladder filling, which was pre-requisite for light-evoked high-amplitude contractions (observed in 53.3% of trials). Potential explanations for these observations include physiological differences in the thresholds of stimulated fibers and their connectivity to spinal circuits

    On Network Science and Mutual Information for Explaining Deep Neural Networks

    Full text link
    In this paper, we present a new approach to interpret deep learning models. By coupling mutual information with network science, we explore how information flows through feedforward networks. We show that efficiently approximating mutual information allows us to create an information measure that quantifies how much information flows between any two neurons of a deep learning model. To that end, we propose NIF, Neural Information Flow, a technique for codifying information flow that exposes deep learning model internals and provides feature attributions.Comment: ICASSP 2020 (shorter version appeared at AAAI-19 Workshop on Network Interpretability for Deep Learning

    Transgenic Mice which Overexpress Nerve Growth Factor

    Get PDF
    Transgenic mice that express increased levels of nerve growth factor (NGF) in the epidermis and other stratified, keratinized epithelium. The nerve growth factor expressing transgenic mice are useful in the study of neurodegenerative disorders of the brain such as Parkinson\u27s syndrome and Alzheimer\u27s disease and for testing for drug candidates for the treatment of these diseases

    Transgenic Mice which Overexpress Neurotrophin-3 (NT-3) and Method of Use

    Get PDF
    Transgenic mice express increased levels of neurotrophin-3 (NT-3) in epithelium when their ancestors are microinjected with the NT-3 gene. The NT-3 growth factor expressing transgenic mice are useful in the study of neurodegenerative disorders of the brain such as Parkinson\u27s syndrome and Alzheimer\u27s disease, of the spinal cord motor neurons such as amyotrophic lateral sclerosis, and for testing drug candidates for the treatment of these diseases

    A parametric shell analysis of the shuttle 51-L SRB AFT field joint

    Get PDF
    Following the Shuttle 51-L accident, an investigation was conducted to determine the cause of the failure. Investigators at the Langley Research Center focused attention on the structural behavior of the field joints with O-ring seals in the steel solid rocket booster (SRB) cases. The shell-of-revolution computer program BOSOR4 was used to model the aft field joint of the solid rocket booster case. The shell model consisted of the SRB wall and joint geometry present during the Shuttle 51-L flight. A parametric study of the joint was performed on the geometry, including joint clearances, contact between the joint components, and on the loads, induced and applied. In addition combinations of geometry and loads were evaluated. The analytical results from the parametric study showed that contact between the joint components was a primary contributor to allowing hot gases to blow by the O-rings. Based upon understanding the original joint behavior, various proposed joint modifications are shown and analyzed in order to provide additional insight and information. Finally, experimental results from a hydro-static pressurization of a test rocket booster case to study joint motion are presented and verified analytically

    Characterization of site-specific GPS errors using a short-baseline network of braced monuments at Yucca Mountain, southern Nevada

    Get PDF
    We use a short-baseline network of braced monuments to investigate site-specific GPS effects. The network has baseline lengths of ∼10, 100, and 1000 m. Baseline time series have root mean square (RMS) residuals, about a model for the seasonal cycle, of 0.05–0.24 mm for the horizontal components and 0.20–0.72 mm for the radial. Seasonal cycles occur, with amplitudes of 0.04–0.60 mm, even for the horizontal components and even for the shortest baselines. For many time series these lag seasonal cycles in local temperature measurements by 23–43 days. This could suggest that they are related to bedrock thermal expansion. Both shorter-period signals and seasonal cycles for shorter baselines to REP2, the one short-braced monument in our network, are correlated with temperature, with no lag time. Differences between REP2 and the other stations, which are deep-braced, should reflect processes occurring in the upper few meters of the ground. These correlations may be related to thermal expansion of these upper ground layers, and/or thermal expansion of the monuments themselves. Even over these short distances we see a systematic increase in RMS values with increasing baseline length. This, and the low RMS levels, suggests that site-specific effects are unlikely to be the limiting factor in the use of similar GPS sites for geophysical investigations

    A blinded determination of H0H_0 from low-redshift Type Ia supernovae, calibrated by Cepheid variables

    Get PDF
    Presently a >3σ{>}3\sigma tension exists between values of the Hubble constant H0H_0 derived from analysis of fluctuations in the Cosmic Microwave Background by Planck, and local measurements of the expansion using calibrators of type Ia supernovae (SNe Ia). We perform a blinded reanalysis of Riess et al. 2011 to measure H0H_0 from low-redshift SNe Ia, calibrated by Cepheid variables and geometric distances including to NGC 4258. This paper is a demonstration of techniques to be applied to the Riess et at. 2016 data. Our end-to-end analysis starts from available CfA3 and LOSS photometry, providing an independent validation of Riess et al. 2011. We obscure the value of H0H_0 throughout our analysis and the first stage of the referee process, because calibration of SNe Ia requires a series of often subtle choices, and the potential for results to be affected by human bias is significant. Our analysis departs from that of Riess et al. 2011 by incorporating the covariance matrix method adopted in SNLS and JLA to quantify SN Ia systematics, and by including a simultaneous fit of all SN Ia and Cepheid data. We find H0=72.5±3.1H_0 = 72.5 \pm 3.1 (stat) ±0.77\pm 0.77 (sys) km s1^{-1} Mpc1^{-1} with a three-galaxy (NGC 4258+LMC+MW) anchor. The relative uncertainties are 4.3% statistical, 1.1% systematic, and 4.4% total, larger than in Riess et al. 2011 (3.3% total) and the Efstathiou 2014 reanalysis (3.4% total). Our error budget for H0H_0 is dominated by statistical errors due to the small size of the supernova sample, whilst the systematic contribution is dominated by variation in the Cepheid fits, and for the SNe Ia, uncertainties in the host galaxy mass dependence and Malmquist bias.Comment: 38 pages, 13 figures, 13 tables; accepted for publication in MNRA
    corecore